Chem. Ber. 113, 1272-1279 (1980)

Thermische Umlagerungen von 8-Methoxybicyclo[5.1.0]octa-2,4-dien und 8-Methoxybicyclo[5.1.0]oct-2-en

Wolfgang Kirmse*, Rolf Kühr, Hans-Rüdiger Murawski, Friedrich Scheidt und Vera Ullrich

Abteilung für Chemie der Ruhr-Universität Bochum, Postfach 102148, D-4630 Bochum

Eingegangen am 2. Juli 1979

Die Gleichgewichte $2x \rightleftharpoons 3e$ und $9x \rightleftharpoons 11$ der Titelverbindungen zeigen einen geringen Einfluß von Methoxy-Substituenten auf die Stabilität des Cyclopropanrings. Reaktionen unter Beteiligung der gegenüberliegenden Cyclopropan-Bindung – die Butadienylcyclopropan-Umlagerung von 2 und die Homo-1,5-H-Verschiebung von 9 – werden durch Methoxygruppen nur mäßig beschleunigt. Die Vinylcyclopropan-Umlagerung $9x \rightarrow 10$ bestätigt den starken Methoxy-Effekt auf benachbarte Cyclopropan-Bindungen.

Thermal Rearrangements of 8-Methoxybicyclo[5.1.0]octa-2,4-diene and 8-Methoxybicyclo[5.1.0]oct-2-ene

The equilibria $2x \rightleftharpoons 3e$ and $9x \rightleftharpoons 11$ of the title compounds reveal a slight influence of methoxy substituents on the stability of cyclopropane rings. Reactions which involve the distal cyclopropane bond – the butadienylcyclopropane rearrangement of 2 and the homo-1,5-H shift of 9 – are but modestly accelerated by methoxy groups. The vinylcyclopropane rearrangement $9x \rightarrow 10$ confirms the strong methoxy effect on proximal cyclopropane bonds.

Die Geschwindigkeiten der Vinylcyclopropan-Umlagerung¹), der Methylencyclopropan-Umlagerung²) und der geometrischen Isomerisierung von Cyclopropan³) werden durch Alkoxy-Substituenten stark erhöht. Diese Beobachtungen erklärte man durch den radikalstabilisierenden Effekt von Alkoxygruppen, der auch in der geringeren C – C-Dissoziationsenergie von 1,2-Dimethoxyethan (71 kcal/mol)⁴) im Vergleich zu Ethan (88 kcal/mol) zum Ausdruck kommt. Für die Methylencyclobutan-Umlagerung und für die geometrische Isomerisierung von Cyclobutan fanden wir eine wesentlich geringere Beschleunigung durch Alkoxy-Substituenten als für die analogen Cyclopropan-Umlagerungen⁵). Radikalstabilisierung reicht daher zur Erklärung des "Alkoxy-Effekts" nicht aus; auch der Grundzustand gespannter Ringe wird möglicherweise durch Alkoxy-Substituenten verändert⁶). Wir berichten hier über den Einfluß von Methoxygruppen auf die thermodynamische Stabilität von Cyclopropanen und auf die Reaktivität der gegenüberliegenden Bindung (in allen bisher untersuchten Modellen erfolgte Bruch der benachbarten C – C-Bindung).

8-Methoxybicyclo[5.1.0]octa-2,4-dien

Grimme und Doering⁷) verfolgten die degenerierte Umlagerung des Bicyclo[5.1.0]octa-2,4-diens (1) mit Hilfe von Deuterium-Markierung. Sie beobachteten zwei kon-

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 – 2940/80/0404 – 1272 \$ 02.50/0 kurrierende Prozesse vergleichbarer Geschwindigkeit: a) eine Butadienylcyclopropan-Umlagerung, die über einen transoiden Übergangszustand verläuft und zum Austausch von 8-*endo*-H mit 6-*exo*-H führt ($1a \neq 1b$), b) eine *endo*,*endo*-1,5-H-Verschiebung ($1a \neq 1c$).

Durch Erhitzen von 8-endo-Methoxybicyclo[5.1.0]octa-2,4-dien (2e)⁸⁾ in Cyclooctan auf 95–130 °C erhielten wir nicht das Produkt der Butadienylcyclopropan-Umlagerung, 6-exo-Methoxybicyclo[5.1.0]octa-2,4-dien (3x). Statt dessen wurde 2equantitativ in 2-Methoxybicyclo[5.1.0]octa-2,4-dien (4) umgewandelt. Die Konstitution des Enolethers 4 folgt aus dem IR-Spektrum ($v_{C=C}$ 1638 und 1605 cm⁻¹, v_{C-O} 1228 und 1165 cm⁻¹) und dem NMR-Spektrum, das nur drei Vinylprotonen zeigt, davon eines bei δ 4.75. Offensichtlich erfolgt die 1,5-H-Verschiebung $3x \rightarrow 4$ rascher als die Butadienylcyclopropan-Umlagerung $2e \rightarrow 3x$. Das ist nicht überraschend, da die verwandte 1,5-H-Verschiebung in 7-Methoxycycloheptatrien^{9,10} ebenfalls ca. 50mal rascher verläuft als in Cycloheptatrien¹¹). Die Geschwindigkeitskonstanten der Gesamtreaktion, $2e \rightarrow 4$, können daher dem langsamsten Schritt, $2e \rightarrow 3x$, zugeordnet werden (Tab. 1).

Die Thermolyse von 8-*exo*-Methoxybicyclo[5.1.0]octa-2,4-dien $(2x)^{8}$ ergab in einer Gleichgewichtsreaktion 6-*endo*-Methoxybicyclo[5.1.0]octa-2,4-dien (3e). 2x und 3e konnten durch Schichtchromatographie getrennt werden. Im NMR-Spektrum von 3e erscheint 6-H als verbreitertes Singulett bei δ 4.25. Bei längerem Erhitzen entstand auch aus 3e der Enolether 4, doch erfolgte diese Umwandlung ca. 100mal langsamer als die Bildung von 3e. Hieraus folgt die *endo*-Stellung der Methoxygruppe in 3e. Die Reaktion 1. Ord-

nung, wenn auch die langsame Bildung von 4 eine exakte Bestimmung der Gleichgewichtskonstanten erschwert. Ausgehend von 2x wurde bei 117°C K = [3e]/[2x] = 0.53 erhalten, ausgehend von 3e K = 0.57. Die Gleichgewichtskonstanten nahmen mit steigender Temperatur ab (Tab. 3, exp. Teil) und ergaben $\Delta H^{\circ} = -1.6 \pm$ 0.2 kcal/mol (-6.7 ± 0.7 kJ/mol), $\Delta S^{\circ} = -5.4 \pm 0.4$ cal/grad·mol ($-22.5 \pm$ 1.6 J/grad·mol). In dem untersuchten Temperaturbereich ist die Begünstigung von 2xim Gleichgewicht (ΔG° positiv) eine Folge des stark negativen ΔS° (und nicht etwa eines positiven ΔH°).

Tab. 1. Aktivierungsparameter	und	Geschwindigkeiten	der	Butadieny	lcyc	lopropan-	Um	lagerung
-------------------------------	-----	-------------------	-----	-----------	------	-----------	----	----------

	E,	1	log 4	$k \cdot 10^4 (\mathrm{s}^{-1})$	
	kcal/mol	kJ/mol	log A	bei 150°C	
$1b \rightarrow 1c^{7)}$				3.15	
$2e \rightarrow 3x$	30.1 ± 0.4^{a}	126 ± 2	$13.1~\pm~0.2$	35.4 ^{b)}	
$2x \rightarrow 3e$	$30.5~\pm~0.5$	$127.5~\pm~2$	12.4 ± 0.3	4.61 ^{b)}	

^{a)} Die angegebenen Fehler sind Standardabweichungen nach der Methode der kleinsten Fehlerquadrate. – ^{b)} Extrapoliert mit Hilfe der Arrhenius-Gleichung.

Diese Beobachtung löst den scheinbaren Widerspruch zwischen dem Gleichgewicht $2\mathbf{x} \neq 3\mathbf{e}$, in dem $2\mathbf{x}$ vorherrscht, und dem kürzlich von *Hoffmann* et al. mittels NMR untersuchten Gleichgewicht $5\mathbf{a} \neq 5\mathbf{b}$, in dem $5\mathbf{b}$ begünstigt ist ($\Delta G^{\circ} = -1.3$ kcal/mol = -5.4 kJ/mol)¹²⁾. In diesem Fall dürfte die Entropieänderung ΔS° klein sein, so daß ΔG° annähernd ΔH° entspricht.

Zusammenfassend zeigt die Thermolyse von 2 eine geringe Beschleunigung der Butadienylcyclopropan-Umlagerung durch die Methoxygruppe in 8-Stellung und eine ebenfalls geringe Destabilisierung des methoxy-substituierten Cyclopropanrings.

8-Methoxybicyclo[5.1.0]oct-2-en

Nach Grimme¹³⁾ stehen Bicyclo[5.1.0]oct-2-en (7) und Cycloocta-1,4-dien (8) bei 180-300 °C im Gleichgewicht, das 8 stark begünstigt: $K = [8]/[7] = 37 \pm 1$ (195-215 °C). Oberhalb von 325 °C erfolgt eine irreversible Umlagerung von 7 zu Bicyclo[3.3.0]oct-2-en (6). D-Markierung weist die Umwandlung $7 \neq 8$ als Homo-1,5-H-Verschiebung aus; die Bildung von 6 aus 7 ist eine Vinylcyclopropan-Umlagerung unter Beteiligung der Bindung C-1 - C-7.

Bei der Thermolyse von 8-*endo*-Methoxybicyclo[5,1.0]oct-2-en (9e)¹⁴) (185 – 225 °C) beobachteten wir neben 3-Methoxycycloocta-1,4-dien (11)¹⁴) auch 8-*exo*-Methoxybicyclo[5.1.0]oct-2-en (9x)¹⁴). Dagegen war bei der Thermolyse von 9x kein 9e nachweisbar. Die Lage des Gleichgewichts, $K = [11]/[9x] = 34 \pm 1$ (204°C), unterscheidet sich nicht wesentlich von den unsubstituierten Verbindungen. Aus dem Gleichgewichtsgemisch $9x \rightleftharpoons 11$ bilden sich langsam 8-syn-Methoxybicyclo[3.2.1]oct-6-en (10)¹⁴⁾ durch Vinylcyclopropan-Umlagerung von 9x und 1,3-Cyclooctadien (12) durch Retro-En-Reaktion von 11. Diese Produkte entstanden vermehrt bei höherer Temperatur, doch wurde selbst bei 325°C kein 4-Methoxybicyclo[3.3.0]octa-2-en (analog $7 \rightarrow 6$) gefunden.

Unter Vernachlässigung der Rückreaktion $11 \rightarrow 9x$ bei geringen Umsätzen läßt sich die Thermolyse von 9e als System von Parallel- und Folgereaktionen¹⁵⁾ behandeln. Für die Konzentration des Zwischenprodukts 9x gilt

$$[9\mathbf{x}] = \frac{k_1[9\mathbf{e}]_0}{k_2 - (k_1 + k_3)} \left(e^{-(k_1 + k_3)t} - e^{-k_2t} \right)$$
(1)

Man erhielt $k_1 + k_3$ aus der Abnahme von 9e, k_2 und k_4 aus der Thermolyse von 9x, die bei geringen Umsätzen als Parallelreaktion $9x \rightarrow 10 + 11$ zu behandeln ist. Mit Hilfe von Gl. (1) wurden dann k_1 und k_3 berechnet (Tab. 5. exp. Teil).

Die Aktivierungsparameter und Geschwindigkeitskonstanten für 200 °C (Tab.2) zeigen, daß die Homo-1,5-H-Verschiebung in 7 gegenüber dem flexibleren Bicyclo[6.1.0]non-2-en (13)¹⁶⁾ und dem offenen *cis*-2-Methyl-1-vinylcyclopropan (15)¹⁷⁾ erschwert ist. Sie wird durch den Methoxy-Substituenten an C-8 nur wenig beschleunigt. Stark beeinflußt wird dagegen die Vinylcyclopropan-Umlagerung. Im Gegensatz zu 7 verläuft sie bei 9 unter Beteiligung der Bindung C-1 – C-8 und bei wesentlich niedrigeren Temperaturen. Die Aktivierungsparameter der Reaktion $9x \rightarrow 10$ sind denen der Umlagerung von 2-Methoxy-1-vinylcyclopropan (17b) zu 4-Methoxycyclopenten $(18b)^{1}$ sehr ähnlich. Auch dort verläuft die Umlagerung über das *trans*-Isomere; die Aktivierungsenergie ist gegenüber Vinylcyclopropan (17a) um 11 kcal/mol erniedrigt.

 Tab. 2. Aktivierungsparameter der thermischen Umlagerungen von 9 und Vergleichsdaten (Gasphase)

	E_a kcal/mol	kJ/mol	$\log A$	$k \cdot 10^5 (s^{-1})$ bei 200 °C
9e → 9x	$41.6~\pm~0.2$	162 ± 6	14.05 ± 0.09	0.66
9e → 11	$36.2~\pm~0.4$	152 ± 2	$12.23~\pm~0.18$	3.14
$9x \rightarrow 11$	34.2 ± 0.2	143 ± 1	11.58 ± 0.05	6.02
$9x \rightarrow 10$	40.2 ± 0.5	168 ± 2	12.66 ± 0.21	0.12
$7 \rightarrow 8^{(13)}$	38.7	162	13.3	2.73
$13 \rightarrow 14^{16)}$	32.2 ^{a)}	135	11.95	120
$15 \rightarrow 16^{17)}$	31.1	130	10.95	38.6
$17b \rightarrow 18b^{1)}$	38.7	162	13.43	3.6

a) In flüssiger Phase, NMR-Messungen bei nur zwei Temperaturen

Interessant ist noch ein Vergleich mit Bicyclo[6.1.0]nona-2,4,6-trien (20). Hier ist der Bruch der C-1 – C-8-Bindung so stark begünstigt ($\Delta H^{\neq} = 26.1 \text{ kcal/mol für 20a}$), daß auch bei Methoxy-Substitution an C-9 die C-1 – C-9-Bindung nicht zu konkurrieren vermag und ausschließlich 19b entsteht ($\Delta H^{\neq} = 24.6 \text{ kcal/mol}$)¹⁸). Erst die Dimethylaminogruppe in 20c bewirkt die konkurrierende Bildung von 19c (40%) und 21c (60%)¹⁹).

Unsere Beobachtungen mit 9 bestätigen die an 2 erhaltenen Resultate: In Gleichgewichtsreaktionen ist nur ein geringer Einfluß der Methoxygruppe auf die Stabilität des Cyclopropanrings zu erkennen. Umlagerungen, die unter Bruch der gegenüberliegenden Cyclopropan-Bindung verlaufen, werden nur mäßig beschleunigt. Wie bereits bekannt¹⁻³), wird die Reaktionsbereitschaft benachbarter Cyclopropan-Bindungen ³stark erhöht.

Experimenteller Teil

Thermolyse von 8-endo-Methoxybicyclo[5.1.0]octa-2,4-dien (2e): Vorversuche mit $2e^{8}$) (10% in Cyclooctan) ergaben nach 6 h bei 120°C unter Stickstoff 91% 2-Methoxybicyclo[5.1.0]octa-2,4-dien (4), 6% 2e waren noch nicht umgesetzt (GC: 85-m-Kapillarsäule mit Siliconöl OV 101, Standard Anisol). Die präparative Abtrennung von 4 erfolgte auf einer 2-m-Glassäule mit 20% Siliconöl DC 200 auf Chromosorb P.

4: IR (Film): 3070, 3010, 3000, 2950, 2930, 2830, 1638, 1605, 1450, 1438, 1420, 1228, 1205, 1198, 1192, 1165, 785, 760, 695 cm⁻¹. – NMR (CCl₄): δ 5.4 – 5.9 m, 4-H und 5-H, 4.75 m, 3-H, 3.55 s, OCH₃, 1.9 – 2.8 m, 6-H, 1.2 – 1.6 und 0.3 – 0.9 m, je 2 Cyclopropan-H.

C₉H₁₂O (136.2) Ber. C 79.37 H 8.88 Gef. C 79.28 H 8.94

Kinetische Messungen wurden in 5-ml-Glasampullen ausgeführt, die 24 h mit Natriummethylat-Lösung vorbehandelt, mit Wasser, Aceton und Hexamethyldisilazan gespült und bei 120 °C getrocknet wurden. Pro Ampulle wurden ca. 0.025 ml einer 10 proz. Lösung von 2e und Methoxycyclooctan (Standard, 2:1) eingefüllt, i. Vak. entgast und unter Stickstoff abgeschmolzen. Die Thermolysen erfolgten bei 90 – 125 °C in einem thermostatisierten Ölbad, die GC-Analyse der Produkte auf einer 25-m-Kapillarsäule, belegt mit Marlophen, bei 80 °C. Die Umwandlung 2e \rightarrow 4 folgte einem Zeitgesetz 1. Ordnung.

T(°C)	94.2	100.2	10	5.3	111.0	115.8	124.2
$k \cdot 10^5 (\mathrm{s}^{-1})$	1.26	2.28		4.03	8.41	12.5	27
$E_a = 126$ log $A =$	0 ± 1.7 k. 13.1 ± 0.2	J/mol	ΔH^{\neq} ΔS^{\neq} ΔG^{\neq} für T.	= 122 = -4 = 124 = 382	2.7 ± 1.7 4.51 ± 0.25 4.4 ± 1.7 2.4 K	kJ∕mol J∕grad•m kJ∕mol	ol

Thermolyse von 8-exo-Methoxybicyclo[5.1.0]octa-2,4-dien (2x): 0.4 ml einer ca. 10 proz. Lösung von $2x^{8}$ in Cyclooctan wurden unter Stickstoff 12 h auf 130 °C erhitzt, wobei ca. 37% 6-endo-Methoxybicyclo[5.1.0]octa-2,4-dien (3e) entstanden. Da eine Trennung von 2x und 3e durch präp. GC nicht gelang, wurde das Gemisch auf DC-Fertigplatten (Merck Nr. 60F 254, Schichtdicke 2 mm, Kieselgel) aufgetragen und mit Methylenchlorid oder 15% Ether in Petrolether entwickelt. Die untere Zone enthielt 3e, das mit Ether extrahiert und durch Kurzwegdestillation gereinigt wurde.

3e: NMR (CCl₄): δ 5.2-6.1 m, 4H; 4.25 s (breit), 1H; 3.3 s OCH₃; 1.6-2.4 m, 2H; 0.5-1.3 m, 2H.

C₉H₁₂O (136.2) Ber. C 79.37 H 8.88 Gef. C 79.26 H 9.06

Die kinetischen Messungen folgten den Angaben für 2e, jedoch diente n-Decan als Standard. Zur Einstellung des Gleichgewichts blieben die Ampullen ca. 11 Halbwertszeichen im Thermostaten. Nach dieser Zeit hatten sich maximal 5% 4 gebildet. GC-Analyse: 85-m-Kapillarsäule, belegt mit Siliconöl OV 101, 80°C. Aus ln $[(A_0 - A_\infty)/(A_t - A_\infty)]$ als Funktion von t erhielt man $k_{2x \to 3e}$ + $k_{3e \to 2x}$, hieraus mit Hilfe der Gleichgewichtskonstanten $k_{2x \to 3e}$.

Ausgangs- material	<i>T</i> (°C)	$k_{2x \rightarrow 3e} \cdot 10^5 (s^{-1})$	K = [3e]/[2x]
2x	108.3	0.87 ± 0.01	0.565
	117.4	2.26 ± 0.05	0.531
	124.5	4.67 ± 0.11	0.513
	130.0	$7.64~\pm~0.11$	0.504
3e	117.4	$2.38~\pm~0.05$	0.570
$E_{\rm a} = 127.5 \pm 2$ log $A = 12.4 \pm 12.4$.1 kJ/mol 0 3	$\Delta H^{\neq} = 124.2 \pm \Delta S^{\neq} = -18.1 \pm 1.5$	2.1 kJ/mol + 2.5 J/grad · mol
10571 - 12.4 -	0.5	$\Delta G^{\neq} = 131.3 \pm $ für $T_{\rm m} = 392.3 {\rm K}$	2.1 kJ/mol

Tab. 3. Geschwindigkeits- und Gleichgewichtskonstanten der Umlagerung $2x \rightarrow 3e$

Thermolyse von 8-Methoxybicyclo[5.1.0]*oct-2-en* (9): 9e und $9x^{14}$) wurden durch Addition von Methoxycarben(oid) aus 1,1-Dichlordimethylether, Methyllithium und Lithiumiodid²⁰⁾ an 1,3-Cycloheptadien dargestellt (Ausb. 23%) und durch präp. GC (6-m-Säule mit 20% Carbowax auf Chromosorb P, 130°C) getrennt. Auch die Produkte 10 und 11 sind in Lit.¹⁴) beschrieben.

Zur Thermolyse wurden ca. 3 μ l eines Gemischs von 9 bzw. 11 und Methoxycyclooctan (Standard) (2:1) in evakuierten 5-ml-Ampullen (Vorbehandlung wie oben) eingeschmolzen und in einem Wirbelschicht-Sandbad (Temperaturkonstanz \pm 0.1 °C) erhitzt. GC-Analyse: 100-m-Kapillarsäule, belegt mit Marlophen, 80 °C.

Ausgangs- material	Reaktions- dauer (h)	9x	10	11	12	[11]/[9x]
9e	69.5	2.79	1.65	92.55	3.00	33.2
9x	69.5	2.77	3.47	90.73	3.03	32.8
11	69.5	2.73	1.30	92.58	3.39	33.9
11	93.5	2.65	1.60	91.62	4.13	34.6

Tab. 4. Gleichgewicht $9 \rightleftharpoons 11$ bei 204.2 °C

Thermolysen bei 324.5 °C: Aus 9e erhielt man nach 1 h 42.9% 10, 8.55% 11 und 48.55% 12, aus 9x nach 0.5 h 42.85% 10, 3.05% 11 und 54.1% 12. In beiden Ansätzen war 9 nicht mehr nachweisbar.

Ergebnisse der kinetischen Messungen: Tab. 2 und Tab. 5.

Tab. 5. Geschwindigkeitskonstanten der Thermolyse von 9, $k \cdot 10^5$ (s⁻¹) (Werte in Klammern mit Hilfe der Arrhenius-Gleichung interpoliert)

	gemessen			berechnet nach Gl. (1)		
7(0)	$k_1 + k_3$	k ₂	<i>k</i> ₄	<i>k</i> ₁	<i>k</i> ₃	
184.6	1.02	1.75	0.028	0.15	0.87	
194.0	(2.33)	3.75	0.072	(0.37)	(1.93)	
194.7	2.39	(3.99)	(0.075)	0.39	2.00	
203.6	(5.23)	7.86	0.160	(0.91)	(4.23)	
203.9	5.29	(8.10)	(0.171)	0.94	4.35	
214.1	(12.2)	17.3	0.428	(2.35)	(9.64)	
214.5	12.7	(17.8)	(0.431)	2.41	10.3	
225.0	27.5	(37.3)	(1.03)	6.10	21.4	
225.2	(28.7)	37.4	1.04	(6.13)	(22.2)	

Literatur

- ¹⁾ J. M. Simpson und H. G. Richey jr., Tetrahedron Lett. 1973, 2545.
- 2) W. Kirmse und H. R. Murawski, J. Chem. Soc., Chem. Commun. 1977, 122.
- 3) W. Kirmse und M. Zeppenfeld, J. Chem. Soc., Chem. Commun. 1977, 124.
- ⁴⁾ L. F. Loucks und K. J. Laidler, Can. J. Chem. 45, 2785 (1967).
- 5) W. Kirmse und H. R. Murawski, J. Chem. Soc., Chem. Commun. 1978, 392.
- ⁶⁾ Zur Therorie der Substituenteneffekte bei Cyclopropan vgl.: ^{6a)} R. Hoffmann, Tetrahedron Lett. 1970, 2907. - 6b) H. Günther, ebenda 1970, 5173. - 6c) R. Hoffmann und W. Stohrer, J. Am. Chem. Soc. 93, 6941 (1971).
- 7) W. Grimme und W. v. E. Doering, Chem. Ber. 106, 1765 (1973).
- ⁸⁾ F. Scheidt und W. Kirmse, Chem. Ber. 109, 1856 (1976).
- ⁹⁾ E. Weth und A. S. Dreiding, Proc. Chem. Soc., London 1964, 59.
 ¹⁰⁾ T. Nozoe und K. Takahashi, Bull. Chem. Soc. Jpn. 38, 665 (1965).
- 11) A. P. ter Borg, H. Kloosterziel und N. van Meurs, Rec. Trav. Chim. Pays-Bas 82, 717 (1963).
- ¹²⁾ R. W. Hoffmann, N. Hauel und F. Frickel, Angew. Chem. 89, 491 (1977); Angew. Chem., Int. Ed. Engl. 16, 475 (1977); R. W. Hoffmann, N. Hauel, F. Frickel, M. Kempf und H. Kessler, Chem. Ber. 112, 2894 (1979).
- 13) W. Grimme, Chem. Ber. 98, 756 (1965).
- 14) W. Kirmse und U. Richarz, Chem. Ber. 111, 1883 (1978).
- ¹⁵⁾ R. A. Alberty und W. G. Miller, J. Chem. Phys. 26, 1231 (1957).
 ¹⁶⁾ D. S. Glass, R. S. Boikess und S. Winstein, Tetrahedron Lett. 1966, 999.
- 17) W. R. Roth und J. König, Liebigs Ann. Chem. 688, 28 (1965).
- 18) G. Boche und G. Schneider, Tetrahedron Lett. 1974, 2449.
- ¹⁹⁾ J. M. Brown und M. M. Ogilvy, J. Am. Chem. Soc. 96, 292 (1974).
- ²⁰⁾ U. Schöllkopf und J. Paust, Chem. Ber. 98, 2221 (1965).

[232/79]